High Pressure, Materials

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

Astrobiology, Department, Geochemistry, High Pressure, Materials, Mineralogy, Planetary Science

The AGU Fall Meeting 2016 will take place in San Francisco, CA from December 12-17.  Many staff members and postdoctoral associates from the Geophysical Laboratory will attend this year.  

Check here daily for live updates on each day's science presentations; or follow along on Facebook, Twitter, YouTube and Instagram. For a live stream of conference photos, click here or follow along below!

Materials

The Geophysical Laboratory's Postdoctoral Fellow Shi Liu was awarded the 2017 APS Metropolis Award in late October.  The purpose of the award is to recognize doctoral thesis research of outstanding quality and achievement in computational physics and to encourage effective written and oral presentation of research results.

The Geophysical Laboratory dedicated two and a half days from October 23-25 celebrating the legacy and vision of Marilyn Fogel, who spent 33 years here as a Staff Scientist doing groundbreaking research and mentoring generations of young scientists of all levels—from high school interns to postdo

High Pressure, Planetary Science

Washington, DC— Did you know that there are at least 17 crystalline forms of ice, many of them formed under extreme pressures, such as those found in the interiors of frozen planets? New work from a team led by Carnegie’s Timothy Strobel has identified the structure of a new type of ice crystal that resembles the mineral quartz and is stuffed with over five weight percent of energy-rich hydrogen molecules, which is a long-standing Department of Energy goal for hydrogen storage.  

High Pressure, Materials

Washington, DC— New work from a team led by the Geophysical Laboratory's Alexander Goncharov has created a new extremely incompressible carbon nitride compound. They say it could be the prototype for a whole new family of superhard materials, due to the unexpected ratio of carbon and nitrogen atoms. Their work is published in the journal Chemistry of Materials.

Geochemistry

This story took time… time, extreme pressure and high temperature. It’s a story of complex NH bedrock geology but also remarkable coincidences. It’s the story of a short-lived, nearly forgotten chapter of NH history: graphite mining in the western hills of our State from the White Mountains to the Monadnock Region.

Materials

Washington, DC— For the first time, researchers, including GL's Viktor Struzhkin, have experimentally produced a new class of materials blending hydrogen with sodium that could alter the superconductivity landscape and could be used for hydrogen-fuel cell storage.

High Pressure

Washington, DC— Hydrogen is the most-abundant element in the universe. It’s also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so much we have to learn about hydrogen.

High Pressure, Materials

Washington, DC— Using laboratory techniques to mimic the conditions found deep inside the Earth, a team of Geophysical Laboratory scientists led by Ho-Kwang “Dave” Mao has identified a form of iron oxide that they believe could explain seismic and geothermal signatures in the deep mantle. Their work is published in Nature.

Pages