High Pressure

Washington, DC—Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter. And yet there are still many hydrogen secrets to unlock, including how best to force it into a superconductive, metallic state with no electrical resistance.

High Pressure

Washington, DC— New work from a team including the Geophysical Laboratory's Guoyin Shen and Yoshio Kono used high pressure and temperature to reveal a kind of “structural memory” in samples of the metal bismuth, a discovery with great electrical engineering potential.

Mineralogy

Washington, DC—Human industry and ingenuity has done more to diversify and distribute minerals on Earth than any development since the rise of oxygen over 2.2 billion years ago, experts say in a paper published today. The work bolsters the scientific argument to officially designate a new geological time interval distinguished by the pervasive impact of human activities: the Anthropocene Epoch.

Planetary Science

Washington, DC—New work from the Geophysical Laboratory’s Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System’s youth when planets were forming and their cores were created. Their findings are published by Nature Geoscience.

Washington, DCIn Earth’s interior, water (H2O) plays an important role in rock physics, but geoscientists rarely treat water in its constituent forms, that is as hydrogen plus oxygen. New work from a team led by the Geophysical Laboratory's Dave Mao has identified that hydrogen can escape from the water under conditions found in Earth’s lower mantle leading to a new paradigm in lower mantle chemistry. Their results were published in Proceeding of the National Academic Science, U.S.A.

High Pressure, Matter at Extreme States

Washington, DC— Although helium is the second most-abundant element (after hydrogen) in the universe, it doesn’t play well with others. It is a member of a family of seven elements called the noble gases, which are called that because of their chemical aloofness—they don’t easily form compounds with other elements. Helium, widely believed to be the most inert element, has no stable compounds under normal conditions. 

High Pressure

Washington, DCPhase transitions surround us—for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Geophysical Laboratory have discovered a new phenomenon of so-called metastability in a liquid phase. A metastable liquid is not quite stable. This state is common in supercooled liquids, which are liquids that cool below the freezing point without turning into a solid or a crystal.

High Pressure, Materials

Washington, DC—Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.

Of particular interest are forms of germanium that can be synthesized in the lab under extreme pressure conditions. However, one of the most-promising forms of germanium for practical applications, called ST12, has only been created in tiny sample sizes—too small to definitively confirm its properties.

Astrobiology, Department, Geochemistry, High Pressure, Materials, Mineralogy, Planetary Science

The AGU Fall Meeting 2016 will take place in San Francisco, CA from December 12-17.  Many staff members and postdoctoral associates from the Geophysical Laboratory will attend this year.  

Check here daily for live updates on each day's science presentations; or follow along on Facebook, Twitter, YouTube and Instagram. For a live stream of conference photos, click here or follow along below!

Materials

The Geophysical Laboratory's Postdoctoral Fellow Shi Liu was awarded the 2017 APS Metropolis Award in late October.  The purpose of the award is to recognize doctoral thesis research of outstanding quality and achievement in computational physics and to encourage effective written and oral presentation of research results.

Pages